The 2020 State of ENGINEERING PRACTICES for MACHINE LEARNING
Key findings

Tech companies are leading in adoption of ML engineering best practices.

Larger and more experienced teams tend to adopt more practices.

General software engineering practices enjoy slightly lower adoption than specific machine learning practices.

Best practices for feature management are the least well adopted.

Desired outcomes such as traceability, agility, effectiveness, and quality are each related to specific sets of practices.

Our global survey among teams that build software with machine learning components revealed which engineering practices are most adopted, by whom, and to which effect.

Read on for details ...

https://se-ml.github.io
About the Survey

We ran a global survey among ML practitioners using an online questionnaire.

Between January and May 2020, we collected 350 responses.

Participants took on average 7 minutes to answer about 40 questions.

The goal was to determine the current state of the art regarding the adoption of software engineering practices by teams that develop software that has Machine Learning components.

The practices included in the questionnaire were determined through an extensive review of scientific articles and practitioner blogs.

Cite as: The 2020 State of Engineering Practices for Machine Learning by Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. More: For more information, and to stay up to date, visit the website of the SE4ML research project: https://se-ml.github.io
Engineering Practices for Machine Learning

Data
Use sanity checks for all external data sources
Check that input data is complete, balanced and well distributed
Write reusable scripts for data cleaning and merging
Ensure data labelling is performed in a strictly controlled process
Make data sets available on shared infrastructure (private or public)

Team
Use a collaborative development platform
Work against a shared backlog
Communicate, align, and collaborate with multidisciplinary team members

Coding
Run automated regression tests
Use continuous integration
Use static analysis to check code quality

Training
Share a clearly defined training objective within the team
Capture the training objective in a metric that is easy to measure and understand
Test all feature extraction code
Assign an owner to each feature and document its rationale
Actively remove or archive features that are not used

Deployment
Automate model deployment
Continuously monitor the behaviour of deployed models
Enable shadow deployment
Perform checks to detect skews between models
Enable automatic roll backs for production models
Log production roll backs with the model’s version and input data

Governance
Ensure fairness and privacy
Machine learning teams around the globe

Response distribution by region

01 Europe 55%
02 North America 23%
03 Asia and Oceania 12%
04 South America 10%

We did not receive any responses from ML teams in Africa.

Take the survey to help us improve geographical representation!

https://se-ml.github.io
Practice adoption increases with team size and experience

Larger teams tend to adopt more practices.

More experienced teams tend to adopt more practices.

Survey correspondents chose one of these answers to indicate to what extent their team adopted each practice.

Y-axis shows percentage of respondents at each level of adoption.

We show cumulative adoption of all practices, partitioned by groups indicated on the X-axis.

Except teams with more than 5 years experience!
Tech companies lead practice adoption

The adoption of best practices by tech companies is higher than by non-tech companies, governmental organisations, and research labs.

Research organisation have lowest practice adoption, mainly for deployment practices.

Tech companies adopt Continuous Integration 15% more often than non-tech companies.
The adoption of best practices is similar across continents, except North-America, where adoption is markedly higher.
The adoption of best practices is largely independent of the type of data that is being processed.

Different data, same practices

Automatic hyper-parameter optimisation is adopted 10% more for tabular data than for other data types.
ML-specific practices are adopted slightly more than general Software Engineering practices among ML teams, the adoption of ML-specific practices is highest, followed by general Software Engineering (SE) practices and SE practices adapted to ML.

Types of practice

https://se-ml.github.io

SE practices related to code quality (static analysis and regression testing) have lowest adoption.
Most adopted practices

Practices related to **measurement** and **versioning** are widely adopted.

The top 4 adopted practices are all related to **model training**.

Top 5

1. Capture the training objective in a metric that is easy to measure and understand
2. Share a clearly defined training objective within the team
3. Use versioning for data, model, configurations and training scripts
4. Continuously measure model quality and performance
5. Write reusable scripts for data cleaning and merging
Least adopted practices

The two most neglected practices are related to feature management.

Outside research, Automated ML through automated optimisation of hyper-parameters and model selection, is not (yet) widely applied.

Bottom 5

1. Assign an owner to each feature and document its rationale
2. Actively remove or archive features that are not used
3. Run automated regression tests
4. Automate hyper-parameter optimisation and Model Selection
5. Enable shadow deployment

https://se-ml.github.io
Capture the training objective in a metric that is easy to measure and understand
Share a clearly defined training objective within the team
Use versioning for data, models, configurations and training scripts
Continuously measure model quality and performance
Write reusable scripts for data cleaning and merging
Enable parallel training experiments
Share status and outcomes of experiments within the team
Use a collaborative development platform
Work against a shared backlog
Communicate, align and collaborate with multidisciplinary team members
Ensure data labeling is performed in a strictly controlled process
Continuously monitor the behaviour of deployed models
Enable automatic roll backs for production models
Make data sets available on shared infrastructure
Automate model deployment
Use continuous integration
Perform checks to detect skews between models
Check that input data is complete, balanced and well distributed
Log production predictions with the model’s version and input data
Peer review training scripts
Enforce fairness and privacy
Use sanity checks for all external data sources
Test all feature extraction code
Use static analysis to check code quality
Enable shadow deployment
Automate hyper-parameter optimisation and model selection
Run automated regression tests
Actively remove or archive features that are not used
Assign an owner to each feature and document its rationale

Practices are ranked by the average of: their rank on Completely, their rank on Completely+Mostly, and their rank on Completely+Mostly+Partially.
Different practices, different outcomes

Analysis of survey responses shows that desired outcomes such as **traceability**, **agility**, **team effectiveness**, and software **quality** are each related to specific sets of practices.

Per desired outcome, we list the three practices with the largest influence.

Agility
1. Automate model deployment
2. Communicate, align, and collaborate with multidisciplinary team members
3. Enable parallel training experiments

Traceability
1. Log production predictions with the model’s version and input data
2. Continuously monitor the behaviour of deployed models
3. Use versioning for data, model, configurations and training scripts

Team Effectiveness
1. Work against a shared backlog
2. Use a collaborative development platform
3. Share a clearly defined training objective within the team

Software Quality
1. Use continuous integration
2. Run automated regression tests
3. Use static analysis to check code quality

https://se-ml.github.io
We reviewed scientific and popular literature to identify recommended practices. Check out this Awesome List with relevant literature.

The best practices that we identified are described in more detail in this Catalogue of ML Engineering Best Practices.

Full details of the methodology behind our survey are described in a scientific article. Read the preprint here.

Visit our project website for more details, to take the survey yourself, and to stay up-to-date with our latest results.
Alex Serban
Koen van der Blom
Holger Hoos
Joost Visser

LIACS, Leiden University, The Netherlands
ICIS, Radboud University, The Netherlands
University of British Columbia, Canada

https://se-ml.github.io/members/
You can help

Take the Survey

If you have not done so yet, please take our 10-min survey!

We will use your answers for our next report on the State of Engineering Practices for Machine Learning.